对火星轨道变化问题的最后解释 (2 / 5) 首页

字体:      护眼 关灯

上一章 目录 下一章

对火星轨道变化问题的最后解释 (2 / 5)
        InSection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.Section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.Verylong-termstabilityofSolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.Aroughestimationofnumericalerrorsisalsogiven.Section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.InSection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5×1010yr.InSection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.

        2Descriptionofthenumericalintegrations

        (本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

        2.3Numericalmethod

        Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&Holman1991;Kino**a,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994).

        Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(N±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermostplanet(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinSussman&Wisdom(1988,7.2d)andSaha&Tremaine(1994,225/32d).Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorintheputationprocesses.Inrelationtothis,Wisdom&Holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.83oftheorbitalperiodofJupiter.Theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.However,sincetheeccentricityofJupiter(~0.05)ismuchsmallerthanthatofMercury(~0.2),weneedsomecarewhenweparetheseintegrationssimplyintermsofstepsizes.

        Intheintegrationoftheouterfiveplanets(F±),wefixedthestepsizeat400d.

        WeadoptGauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)asasolverforKeplerequations.ThenumberofmaximumiterationswesetinHalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

        Theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(F±).

        Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadpletedallthecalculations.SeeSection4.1formoredetail.

        2.4Errorestimation

        2.4.1Relativeerrorsintotalenergyandangularmomentum

        Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.Theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

        RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,andE0andA0aretheirinitialvalues.ThehorizontalunitisGyr.

        Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.IntheupperpanelofFig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-εprecision.

        内容未完,下一页继续阅读

更多完整内容阅读登陆

《墨缘文学网,https://wap.mywenxue.org》
加入书签我的书架


上一章 目录 下一章